以第一作者(含共同一作)及通讯作者发表SCI论文: 1.Bai, X. Li, T.* and Bai, Y.J.*, Dual-modified Li4Ti5O12 anode by copper decoration and carbon coating to boost lithium storage, ACS Sustain. Chem. Eng. 2020, 8(46), 17177-17184. 2.Bai, X., Li, T.*, Gulzar, U., Venezia, E., Chen, L., Monaco, S., Dang, Z., Prato, M., Marras, S., Naden, P.S., Fugattini, S., Capiglia, C. and Zaccaria R.P. *, Towards enhanced sodium storage of anatase TiO2 via a dual-modification approach of Mo doping combined with AlF3 coating. Nanoscale 2020, 12, 15896-15904. 3.Bai, X., Li, T.* and Bai, Y.J.*, Capacity degradation of Li4Ti5O12 during long-term cycling in terms of composition and structure, Dalton Trans. 2020, 49, 10003-10010. 4.Li, T., Bai, X., Gulzar, U., Longoni, G., Bai, Y.J.*, Capiglia, C.*, Deng, W., Zhou, X.F., Liu, Z.P., Feng, Z.F. and Zaccaria, R.P.*, A comprehensive understanding of lithium-sulfur batteries technology, Adv. Funct. Mater. 2019, 29, 1901730. 5.Li, T., Gulzar, U., Zaccaria, R.P., Capiglia, C.*, Hackney, S.A. and Aifantis, K.E.*, Damage Formation in Sn Film Anodes of Na-Ion Batteries, J. Phys. Chem. C 2019, 123, 15244-15250. 6.Li, T., Gulzar, U.*, Bai, X., Lenocini, M., Aifantis, K.E., Capiglia, C.* and Zaccaria, R.P., Insight on the Failure Mechanism of Sn Electrodes for Sodium-Ion Batteries: Evidence of Pore Formation during Sodiation and Crack Formation during De-sodiation, ACS Appl. Energy Mater. 2019, 2, 860-866. 7.Li, T., Bai, X., Gulzar, U., Capiglia, C., Bai, Y.J.* and Zaccaria, R.P.*, Facile synthesis of highly graphitized carbon via reaction of CaC2 with sulfur and its application for lithium/sodium-ion batteries, ACS Omega 2019, 4, 8312-8317. 8.Li, T.*, Gulzar, U., Bai, X., Monaco, S., Longoni, G., Prato, M., Marras, S., Dang, Z., Capiglia, C. and Zaccaria, R.P.*, Surface and Interface Engineering of Anatase TiO2 Anode for Sodium-Ion Batteries through Al2O3 Surface Modification and Wise Electrolyte Selection, J. Power Sources 2018, 384, 18-26. 9.Bai, X.,┴ Li, T.,┴ Dang, Z., Qi, Y.X., Lun, N. and Bai, Y.J.*, Ionic Conductor of Li2SiO3 as an Effective Dual-Functional Modifier To Optimize the Electrochemical Performance of Li4Ti5O12 for High-Performance Li-Ion Batteries, ACS Appl. Mater. Interfaces 2017, 9, 1426-14367. 10.Li, T., Bai, X., Qi, Y.X., Lun, N. and Bai, Y.J.*, Fe3O4 Nanoparticles Decorated on the Biochar Derived from Pomelo Pericarp as Excellent Anode Materials for Li-Ion Batteries, Electrochim. Acta 2016, 222, 1562-1568. 11.Bai, X.,┴ Li, T.,┴ Qi, Y.X., Wang, Y.X., Yin, L.W., Li, H., Lun, N. and Bai, Y.J.*, One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance, Electrochim. Acta 2016, 187, 389-396. 12.Li, T., Bai, X., Lun, N., Qi, Y.X., Tian, Y. and Bai, Y.J.*, Nitrogen-Doped Carbon-Coated Ti–Fe–O Nanocomposites with Enhanced Reversible Capacity and Rate Capability for High-Performance Lithium-Ion Batteries, RSC Adv. 2016, 6, 65266-65274. 13.Li, T., Wei, C., Wu, Y.M., Han, F.D., Qi, Y.X., Zhu, H.L., Lun, N. and Bai, Y.J.*, Simple Preparation of Carbon Nanofibers with Graphene Layers Perpendicular to the Length Direction and the Excellent Li-Ion Storage Performance, ACS Appl. Mater. Interface 2015, 7(9), 5107-5115. 14.Li, T., Lun, N., Qi, Y.X., Wei, C., Sun, Y.K., Zhu, H.L., Liu, J.R. and Bai, Y.J.*, Enhancing the Reversible Capacity and Rate Performance of Anatase TiO2 by Combined Coating and Compositing with N-Doped Carbon, J. Power Sources 2015, 273, 472-478. 15.Li, T., Wang, Y.Y., Tang, R., Qi, Y.X., Lun, N., Bai, Y.J.* and Fan, R.H.*, Carbon-Coated Fe−Mn−O Composites as Promising Anode Materials for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces 2013, 5(19), 9470-9477.
著作章节: 1.Bai, X., Li, T., Gulzar, U., Zaccaria, R.P., Capiglia, C. and Bai, Y.J.* Comprehensive Understanding of Lithium-Sulfur Batteries: Current Status and Outlook (http://www.vbripress.com/book/amseries/), “Advanced Battery Materials” pp.355-398, WILEY-Scrivener Publishing LLC, USA. |